GENERAL EQUILIBRIUM UNDER UNCERTAINTY

Uncertainty and General Equilibrium

- In Chapter 7 of the Theory of Value, Debreu extends the analysis of general equilibrium (optimality, existence) to allow for uncertainty.
- He assumes two dates: the current date t=0 and the future date t=1.
- At t=1, different states of nature can happen, say two states α and β .
- The subjective probabilities of the two states are given by $\pi_i(\alpha)$ and $\pi_i(\beta)$.
- Every agent has a von Newmann & Morgenstern expected utility defined over his consumption at date 0, $c_i(0)$, at date 1 state α , $c_i(\alpha)$ and at date 1 state β , $c_i(\beta)$,

$$U_i(c_i(0), c_i(\alpha), c_i(\beta)) = \pi_i(\alpha) u_i(c_i(0), c_i(\alpha)) + \pi_i(\beta) u_i(c_i(0), c_i(\beta)).$$

CONTINGENT COMMODITIES

- We assume that at date t=0, markets open for the exchange of all contingent commodities $x_i(\alpha)$ and $x_i(\beta)$.
- A *contingent commodity* is a commodity, which will be consumed in state *s* if the state *s* realizes.
- The idea is that you can, at date 0, trade commodities which will become available at different states at date 1.

GENERAL EQUILIBRIUM WITH CONTINGENT COMMODITIES

- A general equilibrium with contingent commodities is an extension of the general equilibrium model with new goods.
- Formally, an equilibrium is a vector of prices p^* and an allocation x^* such that:
 - 1 every agent i maximizes $\pi_i(\alpha)u_i(c_i(0),c_i(\alpha))+\pi_i(\beta)u_i(c_i(0),c_i(\beta)) \text{ subject to}$ $p(0)(x_i(0)-e_i(0))+p(\alpha)(x_i(\alpha)-e_i(\alpha))+p(\beta)(x_i(\beta)-e_i(\beta))=0;$
 - ② (markets clear) $\sum_i x_i(0) = \sum_i e_i(0)$, $\sum_i x_i(\alpha) = \sum_i e_i(\alpha)$, $\sum_i x_i(\beta) = \sum_i e_i(\beta)$;
 - 3 an equilibrium always exists and is optimal.

GENERAL EQUILIBRIUM WITH CONTINGENT COMMODITIES (REMARKS)

- There are markets for every contingent commodity.
- Deliveries are contingent, prices are not!
- We assume strict convexity in preferences.
- All individuals must have the same information, and all know that all have the same information, and all know that all know (i.e. common knowledge).
- Although the model remains static, there are implicit dynamics as decisions are taken before uncertainty is resolved (ex ante), but trade is implemented after the state of nature is known (ex post).

EXAMPLE

- Suppose that there are two states and that the consumer does not consume in state 0.
- Utilities are then given by

$$U_i = \pi_i(\alpha)u_i(c_i(\alpha)) + \pi_i(\beta)u_i(c_i(\beta)).$$

• Consumers have endowments $e_i(\alpha), e_i(\beta)$.

- Suppose that there are two consumers, 1 and 2.
- In addition, total endowments are the same in the two states (no aggregate risk); that is,

$$e_1(\alpha) + e_2(\alpha) = e_1(\beta) + e_2(\beta).$$

Recall the maximization problem for, say agent 1.

$$U_1 = \pi_1(\alpha)u_1(c_1(\alpha)) + \pi_1(\beta)u_1(c_1(\beta))$$

subject to

$$p(\alpha)(x_1(\alpha) - e_1(\alpha)) + p(\beta)(x_1(\beta) - e_1(\beta)) = 0.$$

• The first order condition gives:

$$\frac{\pi_1(\alpha)u_1'(c_1(\alpha))}{\pi_1(\beta)u_1'(c_1(\beta))} = \frac{p(\alpha)}{p(\beta)} = \frac{\pi_2(\alpha)u_2'(c_2(\alpha))}{\pi_2(\beta)u_2'(c_2(\beta))}.$$

ARROW SECURITIES

- If there are many goods, the contingent commodities model implies a huge number of spot markets (trading good l in state α with good k in state β).
- There is an alternative, equivalent but much simpler way to obtain the same result.
- An Arrow security is a financial asset which pays 1 unit of numéraire in some state and 0 in all other states.
- Arrow securities are now traded on the market with a price q in period 0.

PREDICTION MARKETS

Complete Arrow Securities

- Suppose that there are as many Arrow securities as there are states.
- With two states α and β , this means two Arrow securities; one paying 1 unit in state α and 0 in state β , while the other paying 1 unit in state β and 0 in state α .
- Agents choose b^1 and b^2 , the quantity of the two Arrow securities that they buy for q^1 and q^2 , respectively, in period 0.
- In period 1, agents collect the returns of the Arrow securities (i.e. b^1 and b^2) and buy consumption goods $x(\alpha)$ (or $x(\beta)$).

BUDGET CONSTRAINTS

Consumers face three budget constraints:

$$x_i(0) - e_i(0) = -q^1 b_i^1 - q^2 b_i^2,$$

 $p(\alpha)(x_i(\alpha) - e_i(\alpha)) = b_i^1,$
 $p(\beta)(x_i(\beta) - e_i(\beta)) = b_i^2.$

Equivalence Result

- We can prove equivalence between a market with complete Arrow securities and a market with contingent commodities.
- Replacing b_i^1 and b_i^2 from the second and third budget constraints into the first one, we get a unique budget constraint

$$(x_i(0)-e_i(0))+q^1p(\alpha)(x_i(\alpha)-e_i(\alpha))+q^2p(\beta)(x_i(\beta)-e_i(\beta))$$
 as in the case of contingent commodities (see slide 4).

 We also conclude that an equilibrium exists and is optimal.

RATIONAL EXPECTATIONS

- Assume now that different consumers have different information partitions.
- The price p aggregates information detained by different consumers.
- In a Rational Expectations equilibrium, all consumers understand the mapping from state s to the price p_s .
- They can invert that mapping to find the state.
- An equilibrium is called revealing if all consumers can learn the state through prices.

EXAMPLE

- Suppose that there are two states, α and β with objective probabilities $\frac{1}{2}, \frac{1}{2}$, respectively.
- There are two consumers, i = 1, 2.
- There are two goods with prices p(s) and q(s).
- The prices of the goods are normalized so that p(s)+q(s)=1, $s=\alpha,\beta.$

- The first agent knows the state of nature. His endowments are $e_1(\alpha) = (1,0), e_1(\beta) = (0,1).$
- His utility is $U_1(x_1(s), y_1(s)) = \sqrt{x_1(s)y_1(s)}$, $s = \alpha, \beta$.
- The second agent does not know the state of nature and has endowments $e_2(\alpha) = e_2(\beta) = (1, 1)$.
- His utility is $U_2(x_2, y_2) = \frac{1}{4} \log x_2 + \frac{3}{4} \log y_2$ in state α and $U_2(x_2, y_2) = \frac{3}{4} \log x_2 + \frac{1}{4} \log y_2$ in state β .
- Crucially, observe that given that consumer 2 does not know the state of nature, this implies that the equilibrium here is not revealing (i.e. $p(\alpha) = p(\beta)$).

How to Find the Competitive Equilibrium?

It is straight-forward to find the competitive equilibrium.

- 1 Derive demand for fixed prices.
- Use the market clearing conditions to compute equilibrium prices.

Recall the market clearing conditions.

$$x_1(\alpha) + x_2(\alpha) = e_1^x(\alpha) + e_2^x(\alpha);$$

$$y_1(\alpha) + y_2(\alpha) = e_1^y(\alpha) + e_2^y(\alpha);$$

$$x_1(\beta) + x_2(\beta) = e_1^x(\beta) + e_2^x(\beta);$$

$$y_1(\beta) + y_2(\beta) = e_1^y(\beta) + e_2^y(\beta).$$

The first consumer's demand can be computed as

$$x_1(lpha)=rac{1}{2}, \qquad y_1(lpha)=rac{p(lpha)}{2q(lpha)}, \quad ext{and}$$
 $x_1(eta)=rac{q(eta)}{2p(eta)}, \qquad y_1(eta)=rac{1}{2}.$

Given that the agent is informed, the objective function of the optimization problem is formulated assuming a specific state for the agent.

$$x_1(\alpha) \& y_1(\alpha)$$

Max $\sqrt{x_1(s)y_1(s)}$ subject to

$$p(s)x_1(s) + q(s)y_1(s) = p(s)e_1^x(s) + q(s)e_1^y(s)$$
 for $s = \alpha, \beta$.

Assume $s = \alpha$.

Thus,
$$p(\alpha)x_1(\alpha) + q(\alpha)y_1(\alpha) = p(\alpha)$$
 as $e_1(\alpha) = (1,0)$.

[1]:
$$\frac{1}{2} \frac{y_1(a)^{\frac{1}{2}}}{r_1(a)^{\frac{1}{2}}} - \lambda p(a) = 0;$$

[2]:
$$\frac{1}{2} \frac{x_1(a)^{\frac{1}{2}}}{x_1(a)^{\frac{1}{2}}} - \lambda q(a) = 0;$$

[3]:
$$p(a)[x_1(a) - 1] + q(a)y_1(a) = 0.$$

Dividing [1] by [2]:
$$\frac{y_1(a)}{x_1(a)} = \frac{p(a)}{q(a)} \to x_1(a) = \frac{y_1(a)q(a)}{p(a)}$$
.

Substituting the last expression in [3] gives us that $y_1(\alpha) = \frac{p(\alpha)}{2q(\alpha)}$ and then that $x_1(\alpha) = \frac{1}{2}$.

 If the second agent remains uninformed, his demand is given by

$$x_2(s) = \frac{1}{2p(s)}, \quad y_2(s) = \frac{1}{2q(s)}$$

for $s = \alpha, \beta$.

Given that the agent is uninformed, the objective function of the optimization problem is formulated assuming the expected utility of the agent.

$x_2 \& y_2$

$$\begin{array}{l} \operatorname{Max} \ \frac{1}{2}[\frac{1}{4}log \ x_2 + \frac{3}{4}log \ y_2] + \frac{1}{2}[\frac{3}{4}log \ x_2 + \frac{1}{4}log \ y_2] \\ = \frac{1}{2}log \ x_2 + \frac{1}{2}log \ y_2 \end{array}$$

subject to

$$px_2 + qy_2 = pe_2^x + qe_2^y.$$

Thus, $px_2 + qy_2 = p + q$ as $e_2 = (1, 1)$.

[1]:
$$\frac{1}{2}\frac{1}{x_2} - \lambda p = 0$$
;

[2]:
$$\frac{1}{2}\frac{1}{y_2} - \lambda q = 0$$
;

[3]:
$$p[x_2 - 1] + q[y_2 - 1] = 0$$
.

Dividing [1] by [2]:
$$\frac{y_2}{x_2} = \frac{p}{q} \rightarrow x_2 = \frac{qy_2}{p}$$
.

Substituting the last expression in [3] gives us that $y_2=\frac{p+q}{2q}=\frac{1}{2q}$ and then that $x_2=\frac{1}{2p}$.

 The equilibrium prices are calculated using the market clearing conditions:

$$p(\alpha) = \frac{1}{3}, \quad q(\alpha) = \frac{2}{3}, \quad p(\beta) = \frac{2}{3}, \quad q(\beta) = \frac{1}{3}.$$

• In sharp contrast to what was assumed, we have that $p(\alpha) \neq p(\beta)$; hence, this is a revealing equilibrium.

$$p(\alpha) \& q(\alpha)$$

Recall that $x_1(\alpha) + x_2(\alpha) = e_1^x(\alpha) + e_2^x(\alpha)$.

Thus,
$$\frac{1}{2}+\frac{1}{2p(\alpha)}=2\rightarrow\frac{3}{2}=\frac{1}{2p(\alpha)}\rightarrow p(\alpha)=\frac{1}{3}.$$

Recall that $y_1(\alpha) + y_2(\alpha) = e_1^y(\alpha) + e_2^y(\alpha)$.

Thus,
$$\frac{p(\alpha)}{2q(\alpha)} + \frac{1}{2q(\alpha)} = 1 \rightarrow \frac{4}{3} = 2q(\alpha) \rightarrow q(\alpha) = \frac{2}{3}$$
.

- Let's assume from the beginning that this is a revealing equilibrium; thus, consumer 2 learns the state.
- Therefore, consumer 2 formulates the problem like consumer 1 and, as a result, has demands

$$x_2(lpha)=rac{1}{4p(lpha)}, \qquad y_2(lpha)=rac{3}{4q(lpha)}, \quad ext{and} \ x_2(eta)=rac{3}{4p(eta)}, \qquad y_2(eta)=rac{1}{4q(eta)}.$$

• The equilibrium prices are

$$p(\alpha) = \frac{1}{6}, \quad q(\alpha) = \frac{5}{6}, \quad p(\beta) = \frac{5}{6}, \quad q(\beta) = \frac{1}{6}.$$

Inexistence of Rational Expectations Equilibrium

- There are examples where the Rational Expectations equilibirum does not exist.
- This happens when, assuming that the equilibrium is not revealing, we obtain different prices in the two states.
- But assuming that the equilibrium is revealing, we obtain a single price in the two states.

EXAMPLE

Assume that

$$U_{1}(x, y, \alpha) = \frac{2}{3} \log x + \frac{1}{3} \log y,$$

$$U_{1}(x, y, \beta) = \frac{1}{3} \log x + \frac{2}{3} \log y,$$

$$U_{2}(x, y, \alpha) = \frac{1}{3} \log x + \frac{2}{3} \log y,$$

$$U_{2}(x, y, \beta) = \frac{2}{3} \log x + \frac{1}{3} \log y.$$

- Agent 1 knows the state but not agent 2.
- Endowments are $e_1 = e_2 = (1,1)$ in both states.

• Suppose that the equilibrium is not revealing (i.e. $p(\alpha) = p(\beta)$). We have

$$x_1(\alpha) = \frac{2}{3p(\alpha)}, \quad y_1(\alpha) = \frac{1}{3q(\alpha)},$$

 $x_1(\beta) = \frac{1}{3p(\beta)}, \quad y_1(\beta) = \frac{2}{3q(\beta)},$
 $x_2(s) = \frac{1}{2p(s)}, \quad y_2(s) = \frac{1}{2q(s)},$

which result in equilibrium prices

$$p(\alpha) = \frac{7}{12}, \quad q(\alpha) = \frac{5}{12}, \quad p(\beta) = \frac{5}{12}, \quad q(\beta) = \frac{7}{12}.$$

• We have that $p(\alpha) \neq p(\beta)$ but we are told that this is not a revealing equilibrium. Therefore, we need to reformulate the maximization problem for agent 2.

• Suppose that the equilibrium is revealing (i.e. $p(\alpha) \neq p(\beta)$). We have

$$x_1(\alpha) = \frac{2}{3p(\alpha)}, \qquad y_1(\alpha) = \frac{1}{3q(\alpha)},$$

$$x_1(\beta) = \frac{1}{3p(\beta)}, \qquad y_1(\beta) = \frac{2}{3q(\beta)},$$

$$x_2(\alpha) = \frac{1}{3p(\alpha)}, \qquad y_2(\alpha) = \frac{2}{3q(\alpha)},$$

$$x_2(\beta) = \frac{2}{3p(\beta)}, \qquad y_2(\beta) = \frac{1}{3q(\beta)},$$

which result in equilibrium prices

$$p(\alpha) = \frac{1}{2}, \quad q(\alpha) = \frac{1}{2}, \quad p(\beta) = \frac{1}{2}, \quad q(\beta) = \frac{1}{2}.$$

• We have that $p(\alpha) = p(\beta)$; hence, this is not a Rational Expectations equilibrium.

SUMMARY

- The general equilibrium model can be extended to take into account contingent commodities.
- The model with contingent commodities is equivalent to a simpler model where Arrow securities are traded.
- If agents have different information, prices can convey information and the equilibrium concept is a Rational Expectations equilibrium.
- The Rational Expectations equilibrium may fail to exist.